Announcement of a topic for:

Seminar Research	\checkmark	
Seminar Methods	\checkmark	
Master Theses	\checkmark	(please mark one or more)

Topic	High-resolution global models: Representation of vertical velocity field and implications for atmospheric dynamics.
Release Date	2024/07/18
Supervisor	Prof. Dr. Ina Tegen
(contact)	Leibniz-Institut für Troposphärenforschung (TROPOS)
	ina.tegen@tropos.de
Additional Contact	Dr. Roland Schrödner
	Leibniz-Institut für Troposphärenforschung (TROPOS)
	roland.schroedner@tropos.de
	+49 341 2717 7388
Second Reviewer	Prof. Heike Kalesse-Los
	Institut für Meteorologie, Universität Leipzig (LIM)
	heike.kalesse@uni-leipzig.de
Description:	During the model intercomparison projects DYAMOND and
	nextGEMS, different global atmospheric models were applied on
	spatial resolutions of up to 2 km. On such fine-scale grids, processes
	like convection do not need to be parameterized anymore, in contrast
	to coarser grids typically used in climate simulations or global
	weather forecasting (~10-100 km). These models have a high
	potential for improved representation of several weather phenomena
	and their evolution and hence their forecasting capability. However,
	the results of these non-parameterized model simulations need to be
	evaluated comprehensively. The offered master thesis will analyze
	the vertical velocity fields (as a key component of convection) of the
	available simulations and compare these to observations e.g., from
	remote sensing. Research questions to be answered are: What are the
	differences in vertical velocity statistics (e.g., frequency distribution)
	between the different models and resolutions? How does this
	compare to observed statistics? Are there any effects due to
	parameterized convection?
Literature:	Satoh, M., Stevens, B., Judt, F. et al. Global Cloud-Resolving
	Models. <i>Curr Clim Change Rep</i> 5 , 172–184 (2019),
	https://doi.org/10.1007/s40641-019-00131-0.
	Stevens, B., Satoh, M., Auger, L. <i>et al.</i> DYAMOND: the DYnamics
	of the Atmospheric general circulation Modeled On Non-hydrostatic
	Domains. Prog Earth Planet Sci 6, 61 (2019),
	https://doi.org/10.1186/s40645-019-0304-z.
	https://easy.gems.dkrz.de/DYAMOND/index.html
	https://easy.gems.dkrz.de/DYAMOND/NextGEMS/index.html