

QUANTUM COMMUNICATION

Lecture & exercise with discussion

Learn more about Quantum Communication protocols and how a Quantum Internet could be realized.

Prof. Dr. Nabeel Aslam, Felix Bloch Institute for Solid State Physics

For students enrolled in Physics Bachelor and Master programs.

Thursdays 13:15 - 14:45, SR 218 Linnéstr. 5

FIRST LECTURE ON OCTOBER 17TH

WS 24/25

SCAN FOR MORE INFORMATION

Quantum Communication

Module type elective	Recommended for 5/6/7/8 th semester	Module availability once a year	Module number and ECTS
elective	5/6/7/8 semester	once a year	12-PHY-BMWQC1
Workload	Tutorial hours	Private study hours	5 CP
150 h	45 h	105 h	
Responsibility	L		
Head of the	department "Solid-State Based	Quantum Information"	
Teaching units (S	SWS / tutorial hours / private study hours)		
- Lecture "Q	uantum Communication" (2 SW	/S / 30 h / 70 h)	
- Seminar "C	Quantum Communication" (1 SV	WS / 15 h / 35 h)	
Participation req	uirements		
None			
Examinations (du	uration; weighting) and pre-examination re	quirements	
Oral exam (3	30 min; ×1)		
Prerequisite fo			tent, for which points will be awarded ssible points of the semester and 2) one
Objectives	The students		
-	- know the advantages that quantum communication can offer compared to classical communication		
	 are able to describe quantum mathematically 	mechanical processes in q	uantum communication physically and
	- understand the advantages and dis	advantages of different hardwa	re platforms and experimental technique

- for the realization and optimization of quantum communication processes
- have studied current literature on quantum communication and thus gained an overview of the current state of the art and open questions

Content - introduction to quantum mechanics and optics topics relevant to quantum communication

- description, generation and use of quantum entanglement in quantum communication
 - discussion of basic quantum communication protocols
 - problems with quantum communication over long distances and approaches for quantum repeaters
 - promising hardware platforms for the realization of quantum communication (photons, solid-state spins, quantum dots, trapped atoms)

- Nielsen, M. und Chuang, I.Einführung in die Quantum Informationsverarbeitung: "Quantum Computation References and Quantum Information"

- Bassoli, R. et. al., "Quantum Communication Networks"
- Peter Rohde, "The Quantum Internet"
- Azuma, K. et al., "Quantum repeaters: From quantum networks to the quantum internet", arxiv.org (2022)
- Ruf, M. et al., "Quantum networks based on color centers in diamond" Journal of Applied Physics 130, 070901 (2021)